Tepe Değeri (Mod) 9. Sınıf
- Bir veri grubundaki en çok (en sık) tekrarlanan değere Tepe değeri (Mod) denir. Tekrar sayıları frekans olarak adlandırılır.
- Bir veri grubunda birden fazla tekrar eden değer yoksa, bu veri grubunun tepe değeri yoktur.
- Bir veri grubunda aynı sayıda tekrar eden birden fazla değer varsa, tepe değeri de birden fazla olabilir. Fakat, tüm değerler eşit sayıda tekrar ediyorsa tepe değeri yoktur. Ardışık olan tepe değerlerinin ortalaması alınır.
Bilgi: Bir veri grubunda birden fazla en çok tekrar eden terim bulunabilir. Bu durumda veri grubunun birden fazla tepe değeri vardır. Bir veri grubundaki bütün sayılar aynı sayıda tekrar ediyorsa veri grubunun modu yoktur.
Örneğin;
a) 1, 2, 3
b) 1, 1, 2, 3
c) 1, 1, 2, 2, 3
d) 1, 1, 2, 2, 3, 3
sayılarının tepe değeri;
a) tekrar eden sayı olmadığından mod yoktur.
b) sayı grubunun modu 1’dir.
c) sayı grubunun tepe değeri 1 ve 2’dir.
d) sayı grubunda mod (tepe değeri) yoktur. Çünkü aynı sayıda tekrar vardır.
- Aritmetik ortalama veri grubunun genel durumu hakkında bilgi verir.
- Veriler birbirine yakın ise aritmetik orta grupla ilgili daha doğru bilgi verir.
- Tepe değer ve medyan (ortanca) veri grubundaki uç değerlerden aritmetik ortalamaya göre daha az etkilenir.
Medyan (Ortanca) konu anlatımı ve çözümlü sorular için tıklayın.
Çeyrekler Açıklığı konu anlatımı ve çözümlü sorular için tıklayın.
Mod – Tepe Değer konusu ile ilgili çözümlü örnekler aşağıda verilmiştir. Resimlere tıklayarak soru ve çözümleri görebilirsiniz. Kullanıcılardan gelen soruların çözümlerini de burada yayınlıyoruz.
Mod (Tepe Değer) Çözümlü sorular
Çözümlü Test Soruları
1. Aşağıdaki veri setinin tepe değeri (mod) kaçtır?
5, 8, 3, 5, 7, 9, 5, 2
A) 2
B) 3
C) 5
D) 7
Çözüm: Doğru cevap C seçeneğidir.
- 5 sayısı 3 kez tekrar ediyor (en fazla)
- Diğer sayılar daha az tekrar ediyor
- Bu nedenle mod = 5’tir
2. Bir sınıftaki öğrencilerin boy uzunlukları (cm):
155, 160, 160, 165, 170, 170, 170, 175
Bu veri seti için hangisi doğrudur?
A) Mod yoktur
B) Mod 160’tır
C) Mod 170’tir
D) Çift modludur
Çözüm: Doğru cevap C seçeneğidir.
- 170 cm 3 kez tekrar ediyor (en fazla)
- 160 cm ise 2 kez tekrar ediyor
- Tek modlu bir dağılım vardır ve mod 170’tir
3. Hangi veri setinin tepe değeri yoktur?
A) 10, 20, 20, 30
B) 5, 5, 5, 5
C) 1, 2, 3, 4
D) 8, 8, 9, 9
Çözüm: Doğru cevap C seçeneğidir.
- A seçeneğinde mod 20
- B seçeneğinde mod 5
- D seçeneğinde çift modlu (8 ve 9)
- C seçeneğinde tüm sayılar eşit tekrara sahip olduğundan mod yok
4. Bir mağazada bir hafta boyunca satılan ayakkabı numaraları:
38, 39, 40, 40, 40, 41, 42
Bu verilerle ilgili hangisi yanlıştır?
A) Mod 40’tır
B) Medyan 40’tır
C) Aritmetik ortalama 40’tır
D) Mod tepe noktasını gösterir
Çözüm: Doğru cevap C seçeneğidir.
- Mod (40) ve medyan (4. değer 40) doğru
- Ortalama = (38+39+40+40+40+41+42)/7 ≈ 280/7 = 40
- Ancak gerçek hesaplama: 280/7=40 olduğundan bu ifade doğru, soruda “yanlış” istendiği için dikkat!
- Soru kökünde “yanlış” ifadesi olduğundan, aslında tüm seçenekler doğru görünüyor. Soru metninde düzeltme gerekebilir.
5. Aşağıdaki tabloda bir sınıfın matematik notları verilmiştir:
| Not | 50 | 60 | 70 | 80 | 90 |
| Frekans | 2 | 5 | 8 | 4 | 1 |
Bu veri setinin modu kaçtır?
A) 60
B) 70
C) 80
D) 90
Çözüm: Doğru cevap B seçeneğidir.
- 70 notu 8 kişiyle en yüksek frekansa sahip
- Diğer notlar daha düşük frekansta
- Bu nedenle mod = 70’tir
Önemli Uyarı:
4. sorunun çözümünde bir tutarsızlık olduğu görülmektedir. Soru kökü “hangisi yanlıştır” dediği halde tüm seçenekler doğru çıkıyor. Bu nedenle bu sorunun şu şekilde düzeltilmesi uygun olur:
4. (Düzeltilmiş) Bir mağazada bir hafta boyunca satılan ayakkabı numaraları:
38, 39, 40, 40, 40, 41, 42, 42
Bu verilerle ilgili hangisi yanlıştır?
A) Mod 40’tır
B) Medyan 40’tır
C) Aritmetik ortalama 40’tır
D) Çift modludur
Çözüm: Doğru cevap C seçeneğidir.
- Mod 40 (3 kez)
- Medyan (40+40)/2 = 40
- Ortalama = (38+39+40+40+40+41+42+42)/8 = 322/8 = 40.25 ≠ 40
- Çift modlu değil (yalnızca 40 mod)
- “Ortalama 40’tır” ifadesi yanlış olduğu için doğru cevap C’dir
Örnek: 5, 11, 4, 13, 7, 6, 11 verilerinin tepe değeri kaçtır?
Çözüm: Bu grupta en çok tekrar eden değer 11 olduğundan tepe değeri 11 dir. Frekansı ise ikidir.
Örnek: 4, 6, 8, 4, 5, 4, 5, 1, 2, 5, 3, 5, 8, 7, 8, 9 veri grubunun tepe değeri kaçtır?
Çözüm: Bu veri grubunda en çok tekrar eden sayılar 4, 5, ve 8 sayılarıdır. Bunlardan 4 ve 5 ardışık sayılar olduğundan ortalamasını alırsa 4.5 çıkar. Bu veri grubunun tepe değeri 4.5 ile 8 sayılarıdır.
Örnek: Bir gruptaki yedi çocuğun boyları cm cinsinden aşağıda verilmiştir. 141, 142, 143, 141, 143, 140, 145 Buna göre, veri grubunun modunu bulalım.
Çözüm: Boyları küçükten büyüğe doğru sıralayalım: 140, 141, 141, 142, 143, 143, 145 Veri grubunda 140, 142 ve 145 sayıları birer kez, 141 ve 143 sayıları ikişer kez yer almıştır. Grupta en çok tekrar eden sayılar 141 ve 143 tür. Bu nedenle veri grubunun modu 141 ve 143 tür.
Vay eski mesajlar 2014 e dayanıyor yazanların şimdiki halleri, bence çoluk çocuğa karışmışlardır
Alttaki 2014lülere selam olsun
eh diyorum
Saçma olan siz siniz bence arkadașlar gayette çok Iyi ölmüș süper siniz
Beyendim
Ben çok beyendim süpeeeeeeeeeeeeeeeeeeeeerrrrrr
abi gözümüz görüyo yaklaştırmana gerek yak biraz hızlı anlatırsan seviniriz
hiç güzel değil
mehmet doğru söyledin
kötü diyen yalan söylemiş olur malesef çok güzel bir bilgi saglamişlar ama bn beyendim kısacası
çok kısa sorular ve cevaplar beğenmedim
Bnce gayet iyi tesekkürler
Çok işime yaradı hepinizin eline sağlık.
bnce gayet güzel olmuş elinize sağlık 😀
hiç ders işlemedin mi ? bazı terimlerin iki ismi vardır
yoo saçmalanmamış gayet güzel anlatılmış çok teşekkürler
mod la aynı o zaman ikinci ad nie koyuyolar ki
ne saçması arkadaş
Saçmalanmış dediğiniz noktayı belirtseydiniz açıklamasını yapma şansımız olurdu.
gayet güzel
saçmalanmış