Açı Çeşitleri 9. Sınıf


Kategoriler: 9. Sınıf Matematik, Matematik, Üçgenler, Üçgenlerde Temel Kavramlar



Örnek:

Örnek:



Örnek:

Örnek:

Örnek:

Paralel İki Doğrunun Bir Kesenle Oluşturduğu Açılar



Soru: CD ışını ile OA ışını paralel, OB ışını OE ışınına dik, BCD açısı 4x derece olduğuna göre EOA = x açısı kaç derecedir?
Çözüm: CD ve OA ışınları paralel olduklarından dolayı BCD ve BOA açıları yöndeş açılar olup ölçüleri eşittir. Buna göre 4x = 90 + x ise x = 30 derece olarak bulunur.

Soru: AB ve CD doğruları birbirine paralel, EH ve FH doğru parçaları birbirine dik, EG doğru parçası ile FK ışını birer açıortay olduğuna göre, KGE = x açısının ölçüsünü bulunuz.
Çözüm: EG doğru parçası ile FK ışını açıortay olduklarından dolayı AEG ve GEH açıları eşit ve a olsun, CFK ve KFH açıları eşit ve b olsun. Şekilde AB ve CD doğruları paralel olduklarından dolayı BEH ve HFD açıların ölçüleri toplamı EHF açısının ölçüsüne eşittir. Buradan c + d = 90 derece bulunur. AEB ve CFD açıları doğru açılar olduklarından ölçüleri 180 derecedir. 2a + c + 2b = 360 derece ve 2a + 2b + (c + d) = 360 derece, 2 (a + b) + 90 derece = 360 derece, a + b = 135 derece olur. a + b 135 derece olduğundan x = 180 – 135 den 45 derece olarak bulunur.



Soru: CD ışını ile OA ışını paralel, OB ışını OE ışınına dik, BCD açısı 4x derece olduğuna göre EOA = x açısı kaç derecedir?
Çözüm: CD ve OA ışınları paralel olduklarından dolayı BCD ve BOA açıları yöndeş açılar olup ölçüleri eşittir. Buna göre 4x = 90 + x ise x = 30 derece olarak bulunur.

Soru: AB ve CD doğruları birbirine paralel, EH ve FH doğru parçaları birbirine dik, EG doğru parçası ile FK ışını birer açıortay olduğuna göre, KGE = x açısının ölçüsünü bulunuz.
Çözüm: EG doğru parçası ile FK ışını açıortay olduklarından dolayı AEG ve GEH açıları eşit ve a olsun, CFK ve KFH açıları eşit ve b olsun. Şekilde AB ve CD doğruları paralel olduklarından dolayı BEH ve HFD açıların ölçüleri toplamı EHF açısının ölçüsüne eşittir. Buradan c + d = 90 derece bulunur. AEB ve CFD açıları doğru açılar olduklarından ölçüleri 180 derecedir. 2a + c + 2b = 360 derece ve 2a + 2b + (c + d) = 360 derece, 2 (a + b) + 90 derece = 360 derece, a + b = 135 derece olur. a + b 135 derece olduğundan x = 180 - 135 den 45 derece olarak bulunur.

Temel Yeterlilik Sınavı (TYT)
13 Haziran 2020 Cumartesi