İkinci Dereceden Fonksiyonların Grafikleri (Parabol) 11. Sınıf


Kategoriler: 11. sınıf Matematik, Fonksiyonlarda Uygulamalar, Matematik

İkinci Dereceden Bir Değişkenli Fonksiyonlar

a, b, c ∈ R ve a ≠ 0 olmak üzere

f: R→R, y=f(x)=ax2 + bx + c



biçimindeki fonksiyonlara ikinci dereceden bir değişkenli fonksiyon denir. Fonksiyonun analitik düzlemdeki grafiği olan eğriye parabol denir.

Bilgi: Bir fonksiyonun grafiğinin x eksenini kestiği noktaları bulmak için fonksiyonda y = f(x) değeri sıfıra eşitlenir. Fonksiyonun grafiğinin y eksenini kestiği noktayı bulmak için fonksiyonda x değerine sıfır verilir.


Bilgi: Bir fonksiyonun grafiği üzerinde bulunan her nokta fonksiyonun denklemini sağlar.



Parabolün Tepe Noktasının Koordinatları

Parabolün En Büyük ve En Küçük Değeri

f(x) = ax2 + bx + c parabolünde

  • a > 0 ise parabolün alabileceği en küçük değer parabolün tepe noktasının ordinatıdır.
  • a < 0 ise parabolün alabileceği en büyük değer tepe noktasının ordinatıdır.
  • Bu durum parabolün herhangi bir aralıktaki parçası için geçerli değildir.

[a, b] aralığındaki parabolün maksimum-minimum değeri sorulursa tepe noktası T(r, k) olmak üzere f(r), f(a) ve f(b) ye bakılır.

Tepe Noktası ve Bir Noktası Bilinen Parabol Denklemi

T(r, k) parabolün tepe noktası ve A(x0, y0) parabol üzerinde bir nokta ise parabolün denklemini bulmak için
y = a.(x – r)2 + k
yazıldıktan sonra a değerini bulmak için verilen nokta yerleştirilir.



x Eksenin Kestiği Noktalar ve Üzerindeki Başka Bir Noktası Bilinen Parabolün Denklemi

f(x) parabolünün x eksenini kestiği noktalar A(x1, 0) ve B(x2, 0) ise parabolün denklemi
f(x) = a. (x – x1) . (x – x2) biçiminde yazılır. Bilinmeyen a değerini bulmak için parabolün üzerindeki nokta denklemde yazılır.

Üç Noktası Bilinen Parabol Denklemi

A(x0, y0) , B(x1, y1) ve C(x2, y2) noktaları parabolün üzerinde ise üçü de parabolün denklemini sağlar. Bu noktalar parabolün genel denklemi olan

y=f(x) =ax2 + bx + c de yerleştirilirse üç bilinmeyenleri üç denklem çözülür a, b, c değerleri bulunur.

Bir Doğru İle Bir Parabolün Birbirlerine Göre Durumları

y = ax2 + bx + c parabolü ile
y = mx + n

doğrusunun denklemleri birbirine eşitlenip oluşan denklemin diskriminantına bakılır. (Δ = b2 – 4ac)

  • Δ > 0 ise parabol ve doğru iki noktada kesişir.
  • Δ = 0 ise parabol doğruya teğet-tir.
  • Δ < 0 ise parabolle doğru kesişmez.

Bilgi: y = f(x) = ax2 + bx + c

parabolünün x eksenini kesip kesmediğini yorumlamak için x ekseni y = 0 doğrusu olduğundan

ax2 + bx + c = 0 denkleminin diskriminantına bakılır.

  • Δ > 0 ise parabol x eksenini iki farklı noktada keser.
  • Δ = 0 ise parabol x eksenine teğet-tir.
  • Δ < 0 ise parabol x eksenini kesmez.



İkinci Dereceden Fonksiyon Grafikleri video 1 İsabet Akademi

İkinci Dereceden Fonksiyon Grafikleri video 2 İsabet Akademi

Parabol (İkinci Dereceden Fonksiyonlar) konusu 10. sınıf matematik müfredatında yer almakta olup lys matematik sınavında soru çıkmaktadır.

Parabol (İkinci Dereceden Fonksiyonlar) konu başlıkları:

  • y = f(x) = ax^2 Fonksiyonunun Grafiği
  • y = f(x) = ax^2 + c Fonksiyonunun Grafiği
  • y = f(x) = ax^2 + b.x + c Fonksiyonunun Grafiği
  • y = a. (x - r)^2 + k Fonksiyonunun Grafiği
  • Grafiği Verilen Bir Parabolün Denklemini Bulma
  • Bir Parabol ile Doğrunun Durumu
  • İki bilinmeyenli eşitsizliklerin grafik ile çözümü
Temel Yeterlilik Sınavı (TYT)
20 Haziran 2020 Cumartesi