Fonksiyonların Grafikleri 10. sınıf


Kategoriler: 10. sınıf Matematik, Fonksiyonlar 10. Sınıf, Matematik

Bilgi: f(x) = ax + b fonksiyonunun (Doğrusal fonksiyon) grafiği çizilirken x = 0 için y eksenini kestiği nokta, y = 0 için x eksenini kestiği nokta bulunur. Bu iki noktadan geçen bir doğru çizildiğinde grafik tamamlanır.

Örnek:



Örnek:

Bilgi: Eksenleri kestiği noktalar bilinen doğrunun denklemi

xa+yb=1

şeklinde bulunur.

Örnek:



Parçalı Fonksiyonların Grafikleri

Parçalı tanımlı fonksiyonların grafiği çizilirken her aralık için grafikler ayrı ayrı çizilir. Grafiğin uç noktalarının grafiğe dahil olup olmadığına dikkat edilmelidir.

Örnek:

Örnek:

Bilgi: y = mx şeklinde doğrular başlangıç noktasından (orijinden) geçer. Bu doğruların grafikleri çizilirken doğru üzerindeki herhangi bir nokta ile orijin birleştirilir.

Örnek:

Dikey (Düşey) Doğru Testi

Bir fonksiyonun grafiğinde x ekseni üzerinde tanımlı olduğu bir noktadan y eksenine çizilen paralel doğrular grafiği yalnızca bir noktada keser. Bu şekilde grafiğin fonksiyon olup olmadığının incelenmesine Dikey (Düşey) Doğru Testi denir.



Örnek:

NOT: y eksenine çizilen doğrular grafiği bir noktada keserse fonksiyon olur. Ancak birden fazla noktada keserse fonksiyon olmayacaktır. Çünkü fonksiyon olma şartlarından biri “tanım kümesindeki her elemanın görüntüsü daima tektir,” şartı idi.

Örnek:

Fonksiyonların Grafikleri video 10. sınıf

Parçalı Fonksiyonların Grafikleri video 10. sınıf



f(x) = ax + b Fonksiyonunun Grafiği ve Eğim: y = f(x) fonksiyonu verildiğinde f = ((x,y) : y = f(x), x e A, y e B} kümesine düzlemde karşılık gelen noktaların oluşturduğu şekle f fonksiyonunun grafiği denir.

NOT:
1) y = f(x) fonksiyonunun tanım kümesi x ekseni, görüntü kümesi y eksenidir.
2) Bir fonksiyonun x eksenini kestiği yeri bulmak için y = 0 yazarız, y ekseninin kestiği noktayı bulmak için x = 0 yazarız.

f(x) = ax + b Doğrusunun Eğimi: f(x) = ax + b şeklindeki bir doğrusal fonksiyonda a değeri doğrunun eğimi olup, birim zamandaki değişim hızını verir. f(x) = ax + b eşitliğinde b değeri doğrunun y eksenini kestiği noktadır. f(x) = ax + b eşitliğinde grafiğinde doğrunun x ekseni ile pozitif yönde
(saat yönünün tersi) yaptığı açı
a) dar açı ise eğim pozitittir, (a > 0)
b) geniş açı ise eğim negatiftir. (a < 0)
c) 180° ise (grafik x eksenine paralel ise) eğim 0 (sıfır) dır.
d) 90° ise (grafik x eksenine dik ise) eğim tanımsızdır.

Temel Yeterlilik Sınavı (TYT)
13 Haziran 2020 Cumartesi