6. Sınıf Üçgenin Açıları Test 2

Soru 2 / 12
Sorunun Çözümü
  • Verilen bilgilere göre, $|AB| = |AD| = |DC|$ ve $m(\angle DAC) = 35^\circ$.
  • $|AD| = |DC|$ olduğu için $\triangle ADC$ bir ikizkenar üçgendir. Bu durumda taban açıları eşittir: $m(\angle ACD) = m(\angle DAC) = 35^\circ$.
  • $\triangle ADC$'nin $D$ köşesindeki dış açısı $m(\angle ADB)$'dir. Bir üçgende dış açı, kendisine komşu olmayan iki iç açının toplamına eşittir: $m(\angle ADB) = m(\angle DAC) + m(\angle ACD) = 35^\circ + 35^\circ = 70^\circ$.
  • $|AB| = |AD|$ olduğu için $\triangle ABD$ bir ikizkenar üçgendir. Bu durumda taban açıları eşittir: $m(\angle ABD) = m(\angle ADB) = 70^\circ$.
  • $\triangle ABD$'nin iç açıları toplamı $180^\circ$'dir. Buna göre, $m(\angle BAD) + m(\angle ABD) + m(\angle ADB) = 180^\circ$.
  • $m(\angle BAD) + 70^\circ + 70^\circ = 180^\circ$.
  • $m(\angle BAD) + 140^\circ = 180^\circ$.
  • $m(\angle BAD) = 180^\circ - 140^\circ = 40^\circ$.
  • Doğru Seçenek B'dır.
  • Cevaplanan
  • Aktif
  • Boş