6. Sınıf Kalansız Bölünebilme (Bölünebilme Kriterleri) Test 8

Soru 3 / 14
Sorunun Çözümü
  • Aranan sayı 1000'den büyük, rakamları farklı ve 6 ile tam bölünebilen en küçük doğal sayıdır.
  • Bir sayının 6 ile tam bölünebilmesi için hem 2'ye hem de 3'e tam bölünmesi gerekir.
  • Sayı 1000'den büyük ve en küçük olacağı için 4 basamaklı olmalı ve binler basamağı 1 olmalıdır. Sayımız $1bcd$ şeklindedir.
  • En küçük sayıyı bulmak için yüzler basamağını en küçük rakam olan 0 seçelim. Sayımız $10cd$ olur.
  • Rakamları farklı olmalı, yani $c$ ve $d$ rakamları 1 ve 0'dan farklı olmalıdır.
  • Sayı 2'ye bölüneceği için birler basamağı ($d$) çift olmalıdır. $d \in \{2, 4, 6, 8\}$ (0 kullanıldı).
  • Sayı 3'e bölüneceği için rakamları toplamı ($1+0+c+d$) 3'ün katı olmalıdır. Yani $1+c+d$ 3'ün katı olmalıdır.
  • En küçük sayıyı oluşturmak için $c$ rakamını en küçük kullanılmayan rakam olan 2 seçelim. Sayımız $102d$ olur.
  • Şimdi $d$ rakamını bulalım. $d$ çift olmalı ve 1, 0, 2'den farklı olmalı. $d \in \{4, 6, 8\}$.
  • Rakamları toplamı $1+0+2+d = 3+d$ 3'ün katı olmalıdır.
  • $d=4$ için $3+4=7$ (3'ün katı değil).
  • $d=6$ için $3+6=9$ (3'ün katı). Bu durumda rakamlar 1, 0, 2, 6 olup hepsi farklıdır ve $d=6$ çifttir.
  • Böylece aradığımız en küçük sayı 1026'dır.
  • Bu sayının rakamları toplamı $1+0+2+6 = 9$'dur.
  • Doğru Seçenek B'dır.
  • Cevaplanan
  • Aktif
  • Boş