Sorunun Çözümü
Verilen devredeki değişiklikleri ve bunların sonuçlarını adım adım inceleyelim:
- 1. Devrenin direnci nasıl değişir?
- Başlangıçta (1. devre), devrede sadece X ampulü seri bağlıdır. Ampul X'in direncine \(R_X\) diyelim. Devrenin toplam direnci \(R_1 = R_X\)'tir.
- İkinci durumda (2. devre), 1. devreye X ampulü ile özdeş bir Y ampulü seri olarak eklenmiştir. Y ampulünün direnci de \(R_Y = R_X\)'tir.
- Seri bağlı devrelerde toplam direnç, bireysel dirençlerin toplamına eşittir. Bu durumda, 2. devrenin toplam direnci \(R_2 = R_X + R_Y = R_X + R_X = 2R_X\)'tir.
- Görüldüğü gibi, \(R_2 > R_1\) olduğundan, devrenin toplam direnci artmıştır.
- 2. X ampulünün parlaklığı nasıl değişir?
- Bir ampulün parlaklığı, üzerinden geçen akımın şiddetine veya üzerinde harcadığı güce bağlıdır. Güç \(P = I^2 R\) formülüyle bulunur.
- Ohm Kanunu'na göre akım \(I = V/R\)'dir. Pilin gerilimi \(V\) sabit kabul edilir.
- 1. devredeki akım \(I_1 = V / R_1 = V / R_X\)'tir. X ampulünün gücü \(P_{X1} = I_1^2 R_X = (V/R_X)^2 R_X = V^2 / R_X\)'tir.
- 2. devredeki akım \(I_2 = V / R_2 = V / (2R_X)\)'tir. X ampulünün gücü \(P_{X2} = I_2^2 R_X = (V/(2R_X))^2 R_X = (V^2 / (4R_X^2)) R_X = V^2 / (4R_X)\)'tir.
- \(P_{X2} = P_{X1} / 4\) olduğundan, X ampulünün harcadığı güç azalmıştır. Dolayısıyla, X ampulünün parlaklığı azalmıştır.
- 3. Devrenin toplam gerilimi nasıl değişir?
- Devrenin toplam gerilimi, devreyi besleyen güç kaynağının (pilin) gerilimidir.
- Soruda pilin değiştirildiğine veya geriliminin değiştiğine dair bir bilgi verilmemiştir.
- Bu nedenle, devrenin toplam gerilimi değişmez.
- 4. Devreden geçen akım şiddeti nasıl değişir?
- Yukarıda hesapladığımız gibi:
- 1. devredeki akım \(I_1 = V / R_X\)'tir.
- 2. devredeki akım \(I_2 = V / (2R_X)\)'tir.
- \(I_2 = I_1 / 2\) olduğundan, devreden geçen akım şiddeti azalmıştır.
Sonuçları özetlersek:
- I. Devrenin direnci: Artmıştır
- II. X ampulünün parlaklığı: Azalmıştır
- III. Devrenin toplam gerilimi: Değişmez
- IV. Devreden geçen akım şiddeti: Azalmıştır
Bu sonuçlar D seçeneği ile uyuşmaktadır.
Cevap D seçeneğidir.