8. Sınıf Eşlik ve Benzerlik Test 11

Soru 10 / 14
Sorunun Çözümü
  • Bir üçgende aynı köşeden çizilen yükseklik ($h_a$), açıortay ($n_a$) ve kenarortay ($v_a$) uzunlukları arasındaki ilişki genellikle `$h_a \le n_a \le v_a$` şeklindedir.
  • Soruda verilen uzunluklar:
    • Açıortay ($n_a$): `$2x + 3 cm$`
    • Kenarortay ($v_a$): `$13 cm$`
    • Yükseklik ($h_a$): `$x + 5 cm$`
  • Verilen cevaba ulaşmak için, üçgenin ikizkenar olmadığı ve bu üç uzunluğun birbirinden farklı olduğu kabul edilerek kesin eşitsizlik kullanılır: `$h_a < n_a < v_a$`.
  • İlk eşitsizliği çözelim: `$h_a < n_a$` `$x + 5 < 2x + 3$` `$5 - 3 < 2x - x$` `$2 < x$`
  • İkinci eşitsizliği çözelim: `$n_a < v_a$` `$2x + 3 < 13$` `$2x < 10$` `$x < 5$`
  • Bu iki eşitsizliği birleştirirsek `$x$` için aralık `$2 < x < 5$` olur.
  • Bu aralıktaki tam sayılar `$3$` ve `$4$`'tür. `$x$'in en büyük tam sayı değeri` `$4$`'tür.
  • `$x = 4$` için açıortay uzunluğunu hesaplayalım: `$n_a = 2x + 3 = 2(4) + 3 = 8 + 3 = 11 cm$`
  • Doğru Seçenek C'dır.
  • Cevaplanan
  • Aktif
  • Boş