Sorunun Çözümü
- Öğrenciler 1'den 37'ye kadar numaralandırılmıştır. Gruplar, birler basamağındaki rakamları eşit olan öğrencilerden oluşur.
- Bir öğrencinin kendi grubunun sözcüsü olma olasılığı, grubundaki öğrenci sayısının tersidir. Yani, olasılığın en yüksek olması için grubun en az sayıda öğrenciye sahip olması gerekir.
- Seçeneklerdeki öğrencilerin ait olduğu grupları ve bu gruplardaki öğrenci sayılarını belirleyelim:
- A) 6: Birler basamağı 6 olan öğrenciler: {6, 16, 26, 36}. Grup büyüklüğü = 4. Olasılık = $\frac{1}{4}$.
- B) 15: Birler basamağı 5 olan öğrenciler: {5, 15, 25, 35}. Grup büyüklüğü = 4. Olasılık = $\frac{1}{4}$.
- C) 29: Birler basamağı 9 olan öğrenciler: {9, 19, 29}. Grup büyüklüğü = 3. Olasılık = $\frac{1}{3}$.
- D) 33: Birler basamağı 3 olan öğrenciler: {3, 13, 23, 33}. Grup büyüklüğü = 4. Olasılık = $\frac{1}{4}$.
- Olasılıkları karşılaştırdığımızda, $\frac{1}{3}$ diğer seçeneklerdeki $\frac{1}{4}$'ten daha büyüktür. Bu nedenle, 29 numaralı öğrencinin sözcü olma olasılığı en fazladır.
- Doğru Seçenek C'dır.