Sorunun Çözümü
- Bir karenin alanı, bir kenar uzunluğunun karesine eşittir. Yani, alan $= \text{kenar}^2$.
- Bir kenar uzunluğu $8 \text{ cm}$ olan bir karenin alanı $8^2 = 64 \text{ cm}^2$ olmalıdır.
- Seçenekleri inceleyelim:
- A) Alan $25 \text{ cm}^2$. Kenar uzunluğu $\sqrt{25} = 5 \text{ cm}$.
- B) Alan $49 \text{ cm}^2$. Kenar uzunluğu $\sqrt{49} = 7 \text{ cm}$.
- C) Alan $16 \text{ cm}^2$. Kenar uzunluğu $\sqrt{16} = 4 \text{ cm}$.
- D) Alan $64 \text{ cm}^2$. Kenar uzunluğu $\sqrt{64} = 8 \text{ cm}$.
- Buna göre, bir kenar uzunluğu $8 \text{ cm}$ olan kare D seçeneğidir.
- Doğru Seçenek D'dır.