Sorunun Çözümü
- Verilen ifadeyi basitleştirelim. Pay kısmındaki $(x-y)^2 + 4xy$ ifadesi, özdeşliklerden $(x^2 - 2xy + y^2) + 4xy = x^2 + 2xy + y^2$ şeklinde açılır. Bu da $(x+y)^2$ özdeşliğine eşittir.
- Payda kısmındaki $2x+2y$ ifadesi $2(x+y)$ şeklinde yazılabilir.
- İfadeyi basitleştirilmiş haliyle tekrar yazalım: $\frac{(x+y)^2}{2(x+y)}$.
- Pay ve paydadaki ortak terim $(x+y)$ sadeleştirildiğinde ifade $\frac{x+y}{2}$ olur.
- Şimdi $x$ ve $y$ değerlerini yerine koyalım: $x = 3,45$ ve $y = 4,55$.
- $x+y = 3,45 + 4,55 = 8$.
- Son olarak, basitleştirilmiş ifadede $x+y$ yerine $8$ yazalım: $\frac{8}{2} = 4$.
- Doğru Seçenek E'dır.