🎓 5. Sınıf Ondalık Gösterimlerin Basamak Değerleri Test 2 - Ders Notu ve İpuçları
Merhaba sevgili 5. sınıf öğrencileri! Bu ders notu, ondalık gösterimler konusundaki bilgilerinizi pekiştirmeniz ve basamak değerleri ile ilgili soruları kolayca çözebilmeniz için hazırlandı. Haydi, ondalık sayıların gizemli dünyasına birlikte dalalım!
🤔 Ondalık Gösterim Nedir?
- Bir bütünün on, yüz, bin gibi eşit parçalara ayrılmasıyla oluşan kesirlerin virgül kullanılarak gösterilme şekline ondalık gösterim denir.
- Ondalık gösterimler, bir tam kısım ve bir ondalık kısımdan oluşur. Bu iki kısım ondalık virgülü ile ayrılır.
- Örnek: $$12,345$$ sayısında;
- $$12$$ tam kısımdır.
- $$,$$ ondalık virgüldür.
- $$345$$ ondalık kısımdır.
📍 Basamak Adları ve Yerleri
- Ondalık gösterimlerde her rakamın bulunduğu yere göre bir basamak adı vardır.
- Ondalık Virgülün Solundaki Basamaklar (Tam Kısım): Bildiğimiz doğal sayı basamaklarıdır.
- Virgüle en yakın olan: Birler Basamağı ($$1$$)
- Birler basamağının solundaki: Onlar Basamağı ($$10$$)
- Onlar basamağının solundaki: Yüzler Basamağı ($$100$$)
- Ve bu şekilde devam eder...
- Ondalık Virgülün Sağındaki Basamaklar (Ondalık Kısım):
- Virgüle en yakın olan: Onda Birler Basamağı $$\left(\frac{1}{10} \text{ veya } 0,1\right)$$
- Onda birler basamağının sağındaki: Yüzde Birler Basamağı $$\left(\frac{1}{100} \text{ veya } 0,01\right)$$
- Yüzde birler basamağının sağındaki: Binde Birler Basamağı $$\left(\frac{1}{1000} \text{ veya } 0,001\right)$$
- Ve bu şekilde devam eder...
- Örnek: $$458,012$$ sayısındaki basamaklar:
- $$4$$: Yüzler Basamağı
- $$5$$: Onlar Basamağı
- $$8$$: Birler Basamağı
- $$0$$: Onda Birler Basamağı
- $$1$$: Yüzde Birler Basamağı
- $$2$$: Binde Birler Basamağı
✨ Basamak Değeri ve Sayı Değeri
- Sayı Değeri: Bir rakamın bulunduğu basamaktan bağımsız olarak kendi değeridir. Yani, rakamın kendisidir.
- Örnek: $$24,245$$ sayısındaki tüm $$4$$ rakamlarının sayı değeri $$4$$'tür.
- Basamak Değeri: Bir rakamın bulunduğu basamağa göre aldığı değerdir. Rakamın sayı değeri ile basamağın değerinin çarpımıyla bulunur.
- Örnek: $$24,245$$ sayısındaki rakamların basamak değerleri:
- Tam kısımdaki $$2$$ (Onlar Basamağı): $$2 \times 10 = 20$$
- Tam kısımdaki $$4$$ (Birler Basamağı): $$4 \times 1 = 4$$
- Ondalık kısımdaki ilk $$2$$ (Onda Birler Basamağı): $$2 \times 0,1 = 0,2$$
- Ondalık kısımdaki ikinci $$4$$ (Yüzde Birler Basamağı): $$4 \times 0,01 = 0,04$$
- Ondalık kısımdaki $$5$$ (Binde Birler Basamağı): $$5 \times 0,001 = 0,005$$
- Örnek: $$24,245$$ sayısındaki rakamların basamak değerleri:
- 💡 İpucu: Bir sayının kendisi, tüm basamak değerlerinin toplamına eşittir.
- ⚠️ Dikkat: Sayı değeri ile basamak değerini karıştırma! Sayı değeri rakamın kendisiyken, basamak değeri rakamın bulunduğu yere göre değişir.
🗣️✍️ Ondalık Gösterimleri Okuma ve Yazma
- Ondalık gösterimleri okurken önce tam kısım okunur, sonra "tam" denir, ardından ondalık kısım okunur ve son olarak ondalık kısmın en sağındaki basamağın adı söylenir.
- Örnekler:
- $$24,245$$: "Yirmi dört tam binde iki yüz kırk beş"
- $$3,7$$: "Üç tam onda yedi"
- $$4,06$$: "Dört tam yüzde altı" (Sıfır okunmaz, sadece basamağı belirtir)
- $$6,08$$: "Altı tam yüzde sekiz"
🧩 Ondalık Gösterimleri Modelleme
- Ondalık gösterimler farklı modellerle temsil edilebilir.
- Kareli Zemin Modeli: Bir bütünün eşit parçalara ayrılıp bir kısmının boyanmasıyla gösterilir.
- Örnek: $$0,7$$ ondalık gösterimi, $$10$$ eş parçaya ayrılmış bir bütünün $$7$$ parçasının boyanmasıyla gösterilir.
- Abaküs Modeli: Her çubuğun bir basamağı temsil ettiği ve boncukların o basamaktaki rakamı gösterdiği bir modeldir.
- Örnek: Yüzler basamağında $$3$$ boncuk, birler basamağında $$1$$ boncuk, onda birler basamağında $$5$$ boncuk, yüzde birler basamağında $$1$$ boncuk, binde birler basamağında $$8$$ boncuk olan bir abaküs $$301,518$$ sayısını gösterir.
- Kavanoz/Bilye Modeli: Her kavanozun bir basamağı temsil ettiği ve içindeki bilye sayısının o basamaktaki rakamı gösterdiği bir modeldir.
🔄 Kesirleri Ondalık Gösterime Çevirme
- Paydası $$10$$, $$100$$ veya $$1000$$ olan kesirleri ondalık gösterime çevirmek kolaydır.
- Paydadaki sıfır sayısı, virgülden sonraki basamak sayısını belirler.
- Örnek: $$\frac{7}{10} = 0,7$$ (Virgülden sonra bir basamak)
- Örnek: $$\frac{18}{100} = 0,18$$ (Virgülden sonra iki basamak)
- Örnek: $$\frac{245}{1000} = 0,245$$ (Virgülden sonra üç basamak)
- Paydası $$10$$, $$100$$ veya $$1000$$ olmayan kesirleri bu hale getirmek için genişletme veya sadeleştirme yapılabilir.
- Örnek: $$\frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10} = 0,5$$
- Örnek: $$\frac{3}{4} = \frac{3 \times 25}{4 \times 25} = \frac{75}{100} = 0,75$$
- Örnek: $$\frac{12}{16}$$ kesrini önce sadeleştirelim: $$\frac{12 \div 4}{16 \div 4} = \frac{3}{4}$$. Sonra genişletelim: $$\frac{3 \times 25}{4 \times 25} = \frac{75}{100} = 0,75$$
- Tam sayılı kesirleri ondalık gösterime çevirirken tam kısım virgülün soluna, kesir kısmı ise ondalık kısma yazılır.
- Örnek: $$5\frac{1}{2} = 5 + \frac{1}{2} = 5 + 0,5 = 5,5$$
- Örnek: $$4\frac{3}{4} = 4 + \frac{3}{4} = 4 + 0,75 = 4,75$$
- ⚠️ Dikkat: Paydada $$10, 100, 1000$$ gibi sayılar yerine $$300, 200$$ gibi sayılar varsa, önce sadeleştirme yaparak paydayı $$10, 100, 1000$$'e benzetmeye çalış.
- Örnek: $$\frac{18}{300}$$ kesrini ondalık gösterime çevirelim. Önce $$3$$ ile sadeleştirelim: $$\frac{18 \div 3}{300 \div 3} = \frac{6}{100} = 0,06$$. Virgülden sonra iki basamak olmalı ve $$6$$'nın değeri yüzde birler basamağında olmalı.
⚖️➕ Basamak Değerlerinin Karşılaştırılması ve Toplamı
- Aynı rakam farklı basamaklarda bulunduğunda farklı basamak değerlerine sahip olur. Virgülden uzaklaştıkça (sağa doğru gittikçe) basamak değeri küçülür.
- Örnek: $$8,024$$ sayısındaki $$8$$'in basamak değeri $$8$$'dir (birler basamağı).
- Örnek: $$5,182$$ sayısındaki $$8$$'in basamak değeri $$0,08$$'dir (yüzde birler basamağı).
- Örnek: $$4,813$$ sayısındaki $$8$$'in basamak değeri $$0,8$$'dir (onda birler basamağı).
- Örnek: $$9,258$$ sayısındaki $$8$$'in basamak değeri $$0,008$$'dir (binde birler basamağı).
- Bu örneklerdeki $$8$$ rakamının basamak değerleri içinde en küçüğü $$0,008$$'dir.
- Bir ondalık gösterimde birden fazla aynı rakam varsa, bunların basamak değerlerini bulup toplaman gerekebilir.
- Örnek: $$24,245$$ ondalık gösterimindeki $$4$$ rakamlarının basamak değerleri toplamı:
- Tam kısımdaki $$4$$ (birler basamağı): $$4 \times 1 = 4$$
- Ondalık kısımdaki $$4$$ (yüzde birler basamağı): $$4 \times 0,01 = 0,04$$
- Toplam: $$4 + 0,04 = 4,04$$
- Örnek: $$24,245$$ ondalık gösterimindeki $$4$$ rakamlarının basamak değerleri toplamı:
🎲 Basamak Değerleri ile İlgili Özel Durumlar ve İşlemler
- Bazı sorularda basamak değerleri ayrı ayrı verilerek ondalık gösterimi oluşturman istenebilir.
- Örnek: Basamak değerleri $$0,04$$, $$6$$, $$0,3$$, $$40$$ olan bir ondalık gösterimi oluşturalım:
- $$40$$: Onlar basamağı $$4$$
- $$6$$: Birler basamağı $$6$$
- $$0,3$$: Onda birler basamağı $$3$$
- $$0,04$$: Yüzde birler basamağı $$4$$
- Bu değerleri birleştirdiğimizde $$46,34$$ sayısını elde ederiz.
- Örnek: Basamak değerleri $$0,04$$, $$6$$, $$0,3$$, $$40$$ olan bir ondalık gösterimi oluşturalım:
- Şekillerle tanımlanan işlemler: Bazı sorularda belirli şekillerin belirli basamaklardaki rakamların sayı değerlerini bulma ve bu değerlerle işlem yapma (çarpma gibi) anlamına geldiği görülebilir.
- Burada önemli olan, verilen şeklin hangi basamağı temsil ettiğini ve sayı değerini mi yoksa basamak değerini mi istediğini doğru anlamaktır.
- Örnek: Bir şekil "yüzde birler basamağındaki rakamın sayı değerini bul" derken, başka bir şekil "yüzler basamağındaki rakamın sayı değerini bul" diyebilir. Bu sayı değerlerini bulduktan sonra istenen işlemi (örneğin çarpma) yapmalısın.
Bu ders notları, ondalık gösterimler ve basamak değerleri konusundaki tüm temel bilgileri ve sık karşılaşılan soru tiplerini kapsamaktadır. Bol bol pratik yaparak konuyu iyice pekiştirmeyi unutma! Başarılar dilerim! 🚀