4. Sınıf Çıkarma İşlemi Test 2

Soru 3 / 18

🎓 4. Sınıf Çıkarma İşlemi Test 2 - Ders Notu ve İpuçları

Bu ders notu, 4. sınıf seviyesindeki çıkarma işlemi testlerinde karşına çıkabilecek temel konuları ve problem çözme stratejilerini kapsar. Dört, beş ve altı basamaklı sayılarla çıkarma, verilmeyen terimi bulma, sayıları karşılaştırma, basamak değeri ve çok adımlı problemler gibi önemli başlıkları tekrar etmeni sağlayacak. Sınav öncesi son tekrarını yaparken bu notlardan faydalanabilirsin! 🚀

🔢 Büyük Sayılarla Çıkarma İşlemi

  • Çıkarma işlemi yaparken sayıları basamaklarına göre alt alta doğru bir şekilde yazmak çok önemlidir. Birler basamağı birler basamağının, onlar basamağı onlar basamağının altına gelmeli.
  • İşleme her zaman en sağdaki basamaktan, yani birler basamağından başlanır.
  • Üstteki rakam alttaki rakamdan küçükse, solundaki basamaktan "onluk" veya "yüzlük" (yani 10 veya 100) alırız. Buna "onluk bozma" denir. Aldığımız basamağın değeri 1 azalır.
  • Örnek: 52 - 7 işleminde, 2'den 7 çıkmaz. 5 onluğundan 1 onluk alırız. 5 onluk 4 onluk kalır, 2 ise 12 olur. Şimdi 12 - 7 = 5. Onlar basamağında kalan 4'ü aşağı yazarız. Sonuç 45.
  • Zihinden çıkarma yaparken, özellikle 100, 200, 1000 gibi yuvarlak sayılarla çıkarma işleminde, sadece ilgili basamağı değiştirmeyi düşünebilirsin. Örneğin, 2450 - 200 işleminde, yüzler basamağındaki 4'ten 2 çıkarılır, sonuç 2250 olur. Eğer onluk bozma gerekiyorsa, bunu zihninde yapmaya çalışabilirsin.

🔍 Çıkarma İşleminde Verilmeyen Terimleri Bulma

  • Çıkarma işleminde üç ana terim vardır:
    • Eksilen: Kendisinden sayı çıkarılan sayı (en büyük sayı).
    • Çıkan: Eksilenden çıkarılan sayı.
    • Fark (Sonuç): Çıkarma işleminin sonucu.
  • Eksilen'i bulmak için: Çıkan ile Fark'ı toplarız.
    💡 İpucu: Eksilen her zaman en büyük sayıdır, bu yüzden onu bulmak için toplama yaparız.
  • Örnek: █ - 3261 = 1718 ise, █ = 3261 + 1718 = 4979.
  • Çıkan'ı bulmak için: Eksilen'den Fark'ı çıkarırız.
    💡 İpucu: Çıkan ve Fark yer değiştirebilir. Eksilen - Fark = Çıkan.
  • Örnek: 9181 - █ = 2018 ise, █ = 9181 - 2018 = 7163.
  • Fark'ı bulmak için: Eksilen'den Çıkan'ı çıkarırız.

🔢 Sayıları Oluşturma ve Karşılaştırma

  • Verilen rakamlarla en büyük sayıyı oluşturmak için, rakamları büyükten küçüğe doğru sıralarız.
  • Örnek: 2, 7, 0, 5 rakamlarıyla en büyük sayı: 7520.
  • Verilen rakamlarla en küçük sayıyı oluşturmak için, rakamları küçükten büyüğe doğru sıralarız. Ancak sıfır (0) en başta olamaz. Eğer sıfır varsa, ikinci en küçük rakamı başa yazarız, sonra sıfırı koyarız.
  • 💡 İpucu: Örneğin, 2, 7, 0, 5 rakamlarıyla en küçük sayı 2057'dir (0257 değil).
  • Sayıları karşılaştırırken, önce basamak sayılarına bakarız. Basamak sayısı fazla olan sayı daha büyüktür.
  • Basamak sayıları eşitse, en soldaki (en büyük basamaktaki) rakamdan başlayarak karşılaştırma yaparız. Hangi sayıda o basamaktaki rakam büyükse, o sayı daha büyüktür.

💡 İpucu: Basamak Değeri ve Sayı Değeri

  • Sayı değeri: Rakamın kendi değeridir (örneğin 5 rakamının sayı değeri 5'tir).
  • Basamak değeri: Rakamın bulunduğu basamağa göre aldığı değerdir (örneğin 5'in onlar basamağındaki değeri 50'dir).
  • Çıkarma işlemlerinde verilmeyen rakamları bulurken, basamak değerlerini ve onluk bozma mantığını iyi anlamak gerekir.
  • Örnek: Bir çıkarma işleminde birler basamağında A - 5 = 9 sonucunu görüyorsak, A'nın 5'ten küçük olduğu ve soldan onluk bozduğu anlaşılır. Bu durumda A + 10 - 5 = 9 olmalıdır. A + 5 = 9 denklemini çözdüğümüzde, A = 4 bulunur.
  • Abaküste her çubuktaki boncuk sayısı o basamağın rakamını gösterir. Örneğin, binler basamağında 2 boncuk varsa, binler basamağı 2'dir.

🧩 Çok Adımlı Problemler ve Görsel Yorumlama

  • Problemleri çözerken adımları dikkatlice takip etmelisin. Önce ne isteniyor, hangi bilgiler verilmiş, hangi işlemleri yapmam gerekiyor diye düşün.
  • Diyagramlar, tablolar veya abaküs gibi görseller verildiğinde, önce bu görseldeki bilgileri doğru anlamalısın.
  • Problemlerdeki "kaç fazladır?", "kaç eksiktir?", "fark kaçtır?" gibi ifadeler genellikle çıkarma işlemi yapmanı gerektirir. "Toplamı kaçtır?" ifadesi ise toplama işlemidir.
  • Bazen bir problemi çözmek için hem toplama hem de çıkarma işlemlerini art arda yapman gerekebilir. Adımları karıştırmamak için her adımı yazarak ilerle.
  • Günlük Hayat Örneği: Kumbaranda 350 TL var. Annen sana 100 TL verdi, sen de 50 TL'sini oyuncak aldın. Kumbaranda kaç TL kaldı?
    İlk adım: 350 + 100 = 450 TL (toplama).
    İkinci adım: 450 - 50 = 400 TL (çıkarma).

⚠️ Dikkat Edilmesi Gerekenler

  • Onluk Bozma: Çıkarma işleminde en çok hata yapılan yerlerden biri onluk bozmadır. Bir basamaktan onluk aldığında, o basamağın değerini 1 azaltmayı unutma. Aldığın onluğu da diğer basamağa eklemelisin.
  • Sıfırın Yeri: En küçük sayıyı oluştururken sıfırı en başa yazmamaya dikkat et. Örneğin, 0123 değil, 1023.
  • Problem Okuma: Problemi en az iki kere oku. Ne istediğini tam olarak anladığından emin ol. "En çok", "en az", "toplam", "fark" gibi anahtar kelimelere dikkat et.
  • İşlem Sırası: Diyagramlı veya çok adımlı problemlerde, işlemlerin sırasını doğru takip et. Genellikle yukarıdan aşağıya veya soldan sağa doğru ilerlenir.
  • Basamakları Karıştırma: Sayıları alt alta yazarken basamakları kaydırmamaya özen göster. Her basamak kendi hizasında olmalı.

Bu notları dikkatlice tekrar et ve bol bol pratik yap! Başarılar dilerim! ✨

  • Cevaplanan
  • Aktif
  • Boş