Sorunun Çözümü
Üç doğrunun kesim noktalarının oluşturduğu üçgenin dik üçgen olması için, bu doğrulardan herhangi ikisinin birbirine dik olması gerekir. İki doğrunun dik olması için eğimlerinin çarpımı -1 olmalıdır.
- Doğruların Eğimlerini Bulma:
Genel denklemi $Ax + By + C = 0$ olan bir doğrunun eğimi $m = -A/B$ formülüyle bulunur.
- L1: $x - ky + 4 = 0 \implies m_1 = -1/(-k) = 1/k$
- L2: $x - y + 3 = 0 \implies m_2 = -1/(-1) = 1$
- L3: $3x + 2y - 1 = 0 \implies m_3 = -3/2$
- Diklik Durumlarını İnceleme:
Üçgenin dik üçgen olması için, iki doğrunun eğimleri çarpımı -1 olmalıdır.
- Durum 1: L1 ve L2 dik ise ($m_1 \cdot m_2 = -1$)
$ (1/k) \cdot 1 = -1 $
$ 1/k = -1 $
$ k = -1 $
- Durum 2: L1 ve L3 dik ise ($m_1 \cdot m_3 = -1$)
$ (1/k) \cdot (-3/2) = -1 $
$ -3/(2k) = -1 $
$ -3 = -2k $
$ k = 3/2 $
- Durum 3: L2 ve L3 dik ise ($m_2 \cdot m_3 = -1$)
$ 1 \cdot (-3/2) = -3/2 $
$-3/2 \neq -1$ olduğundan, L2 ve L3 birbirine dik değildir.
- Durum 1: L1 ve L2 dik ise ($m_1 \cdot m_2 = -1$)
- k'nın Alabileceği Değerler Toplamı:
k'nın alabileceği değerler $-1$ ve $3/2$'dir.
Bu değerlerin toplamı: $ -1 + 3/2 = -2/2 + 3/2 = 1/2 $
Cevap C seçeneğidir.