Sorunun Çözümü
- EBOB tanımı: İki sayının EBOB'u (En Büyük Ortak Bölen), bu iki sayıyı da tam bölen en büyük sayıdır.
- I. ifadeyi inceleyelim: "20 iki sayıyı da tam böler." EBOB'un tanımına göre, eğer iki sayının EBOB'u $20$ ise, $20$ bu sayıların her ikisini de tam böler. Bu ifade her zaman doğrudur.
- II. ifadeyi inceleyelim: "Sayılardan biri kesinlikle 20'dir." Örneğin, $40$ ve $60$ sayılarının EBOB'u $20$'dir. Ancak bu sayılardan hiçbiri $20$ değildir. Bu ifade her zaman doğru değildir.
- III. ifadeyi inceleyelim: "20 iki sayının da katıdır." Bu ifade, $20$'nin sayılara bölündüğü anlamına gelir. Oysa EBOB $20$ ise, sayılar $20$'nin katları olmalıdır. Örneğin, $40$ ve $60$ sayılarının EBOB'u $20$'dir. $20$, $40$'ın veya $60$'ın katı değildir. Bu ifade her zaman doğru değildir.
- Yukarıdaki incelemelere göre, sadece I. ifade her zaman doğrudur.
- Doğru Seçenek A'dır.